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Abstract. The increasing frequency and intensity of extreme weather events, driven by global temperature rise, pose
challenges to the safety and resilience of the electrical grid [3]. Our goal is to develop a reproducible methodology and
software package that identifies areas of improvement for the performance of photovoltaic (PV) systems through severe
weather, aiming to build resilience and avoid rotating outages. This study examines the impact of extreme weather
by analyzing high temperatures, solar irradiance, and wind speed, with a focus on abnormal weather oscillations.
By employing data-driven models to simulate extreme events, utilities and developers can enhance the efficiency of
renewable energy, ensuring reliable distribution across the Western Electricity Coordinating Council (WECC). My
research supports the development of intelligent planning algorithms for renewable-backed grids during heat waves,
particularly in regions where electricity demand surges during high-temperature periods. Under the Renewable Energy
Generation Risk from Outlier Weather (REGROW) project, led by the SLAC National Accelerator Laboratory, my data
visualizations provide the ground truth that compares the data from the risk simulation and robust control for future
optimization models. This research aims to strengthen grid resilience and contribute to climate change mitigation
through reliable and efficient renewable energy.

I. INTRODUCTION This study uses simulation and optimization models to
identify how PV systems can be improved to ensure reliable
operation even during heatwaves. By focusing on these
models, the research aims to ensure that PV systems like solar
panels, wind turbines, and battery storage can continue to
contribute effectively to the grid, even during periods of high

stress, thereby supporting overall grid stability.

Aligned with the REGROW project’s objectives of data
curation and risk modeling for renewable generators, our
study of the August 2020 heatwave contributes to the
development of statistical methods and software tools
designed to optimize grid performance, predict potential
challenges, and implement strategies to assess correlated
losses in solar and wind generators. National Renewable
Energy Laboratory (NREL) partnered with SLAC to perform Il
a case study of an extreme weather event, such as the
California August 2020 heatwave, to gather data and test these
strategies. S

Abnormal events are defined as those deviating
significantly from historical norms, like heat waves with |
temperatures 10—20°F above average or prolonged reductions
in sunlight due to unusual atmospheric conditions. Extreme
events involve physical damage to generators, such as ‘
hail-damaged solar panels or wind-damaged turbines [1].

Between August 14 and August 19, 2020, the western
United States, including California, experienced an extreme
heatwave, resulting in four of the five hottest August days
on record since 1985 [2]. When a heatwave hits a grid,
energy demand surges, potentially exceeding the available
load supply. The electrical grid can only produce a certain
amount of electricity at a time, which may lead to failures,
forced rolling blackouts, equipment damage, and revenue loss
due to power outages.

METHODOLOGY
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Figure 1. Google Earth of WECC Locations

Given the wide range of risks posed by anthropogenic
climate change, extreme weather events, and the vulnerability
of power infrastructure to potential attacks, it is crucial to
design energy systems with enhanced resilience. Photovoltaic
(PV) systems, which play a vital role in mitigating climate
change by reducing reliance on fossil fuels, are mitigated by
dispersing generators over large areas, allowing for spatial
averaging of local weather conditions [1]. The larger the
collection of solar generators, the fewer variables there are,
resulting in more stable fleet behavior.

Our analysis of extreme weather’s impact on photovoltaic
(PV) systems employed a data-driven approach, integrating
Python programming with the interactive Marimo user
interface. Curated data collected from the National
Renewable Energy Laboratory (NREL) and NOAA’s Storm
Events Database focused on weather patterns across the
Western Electricity Coordinating Council (WECC) region,
including temperature, solar irradiance, and wind speed,
to understand the effects of heat waves on electricity
consumption and grid stability [3].
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Figure 2. Daily Average Temperature in August

Estimating the trend of extreme weather events, such as the
2020 California heat wave, involves visualizing temperature
anomalies over specific periods like August. This analysis
compares temperature means of surrounding years across
multiple grid locations and time scales, including hourly
and daily data, to identify abnormal fluctuations. Weather
anomalies, like significant temperature rises, are modeled
as deviations from regular climate patterns, calculated
by comparing hourly temperatures against the average of
surrounding years for August, which serves as the baseline
for each grid location.

The geographic locations of each node were decoded
using latitude and longitude coordinates and plotted on
Google Earth Pro for an overview visualization (Figure
2). Python libraries such as Pandas and Matplotlib
were employed to manipulate and group these nodes by
location and temperature. Throughout the research, version
control and collaborative code review were managed through
GitHub, ensuring effective troubleshooting and continuous
improvement.

To narrow the data closer to the August 2020 heat
wave, we performed a time slice using data frames that
focused on specific days of the month for each selected
location. Temperature values were overlapped and displayed
to compare average daily temperatures (Figure 2). The
process was applied to hourly and daily calculations, revealing
that hourly data provided the most accurate representation of
event impact. The Python library numpy was used to average
hourly data for August into daily scales, which were then
stitched together on a single graph.

Using Marimo UI, each node could be visualized through
a toggle button, enabling direct comparison of temperature
variations between counties. For example, node "9q5epc"
in Los Angeles, CA, exhibited a temperature spike nearly
10°C higher than surrounding years, lasting 8-10 days. This
prompted further analysis, including the calculation of heat
wave intensity through temperature peaks and integrals. A
heat map (Figure 3) provided a clearer visualization of these
variations.

To measure the 2020 heat wave’s scale, we calculated the
integral and max residual temperatures by comparing 2020
temperatures to the predicted average from non-heatwave

Heat map of temperatures (2018-2022)
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Figure 3. Temperature intensity in Southern California
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Figure 4. Temperature deviation in August 2020

years (2018, 2019, and 2021). The integral allowed for
assessing heatwave intensity and duration. Observing (Figure
7), the first half of August showed an unusual dip below the
median temperature, followed by a sharp peak in the second
half, underscoring the increased intensity of temperature
oscillations due to climate change.

1 # Temperature Residual Functien

2. def analyze_baseline(df):

3 actual = df.loc['2020-08-081':'2020-88-31"'].values
4 predicted = np.c_[

5 df.loc['2018-08-01":'2018-08-31"'].values,
6 df.loc['2019-08-01":'2019-08-31"'].values,
7 df.loc['2021-08-01":'2021-08-31"].values,
8 df.loc['2022-08-01":'2022-08-31"'].values
9 ]

10 predicted = np.median(predicted, axis=1)

11 return actual - predicted

Figure 5. Residual Temperature Function



Heat map of Wind Speed (2018-2022)
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Figure 6. Abnormal Heat from Dry Hot Winds

An important factor in understanding the causes of heat
waves is the effect of anticyclones, weather systems with high
atmospheric pressure at its center, and hot dry air trapped in
high-pressure systems. Winds, such as the Santa Ana winds,
can dry out the atmosphere, and anticyclones prevent hot air
from rising, leading to increased ground-level temperatures
[4]. The 2020 wildfires across California exacerbated these
conditions. Wildfires caused smoke that would cover sunlight
for days during and following the heatwave, reducing the
amount of solar irradiation, as confirmed by the NREL data.

The initial plotting of wind speed on the heat map in (Figure
5) reveals intense areas of possible hot winds that may have
contributed to the heating of the lower atmosphere. Solar
irradiance, measured in W/m?, showed a noticeable dip during
the heatwave, indicating reduced solar energy. The correlated
loss between smoke coverage and PV output becomes clearer
when comparing the wind speeds from the WECC data,
highlighting the interconnected impact of wind patterns on
solar output. The possible increase in wind speeds, such as
the Santa Ana wind, may have increased the dryness of the
land, and heating of the lower atmosphere.

Our research on curated data sets of historical abnormal
patterns and extreme weather events demonstrates that it is
possible to identify instances where wind and solar generators
produced below typical output levels. To investigate further,
the same approach of calculating integrals, maximum residual
temperatures, and daily averages for August was applied
to solar irradiance data, examining the correlation between
wildfires, smoke, and decreased solar output.

I1l.  RESULTS

Research on these curated datasets covering historical
abnormal patterns and extreme weather events revealed it is

REGROW: Temperature Report

Study of extreme weather across WECC. Report measures the magnitude of the 2020 heatwave through temperature peaks and integrals.
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Figure 7. Temperature Report with Max Residuals and Integrals
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Figure 8. Reduction of Solar Irradiance Due to Wildfire Smoke

possible to identify where wind and solar generators produced
less than typical output. For the node in Los Angeles,
California, the calculation results provided concrete evidence
of a heatwave, demonstrated by significant temperature
anomalies.

The max residual temperature was recorded at 9.80°C,
with an overall temperature integral of 25.48°C, including
a -9.17°C dip in the first half of August and a sharp rise
to 34.66°C in the second half. These results display the
increasing intensity of weather oscillations, characterized by
an initial negative dip followed by a steep temperature rise
during the heatwave. The data was compiled into a report,
sorted by descending temperatures to identify the counties
most affected by the heatwave.

Understanding these patterns is crucial for preparing the
grid and renewable energy systems. By anticipating extreme
events, utilities and developers can utilize simulation software
such as GRIP to quantify grid status and pole vulnerability,
and REGROW to produce and store renewable energy from
solar sources and lithium batteries, ensuring readiness when
the next heatwave occurs.

IV. CONCLUSION

Climate change has intensified temperature oscillations
over time, leading to more frequent and severe heat waves.
This technical report analyzes node data by converting it
into latitude and longitude coordinates, correlating with heat



wave magnitudes using maximum temperature residuals and
integrals. These fluctuations are visualized through graphs
that highlight the patterns contributing to the development of
intelligent algorithms for grid simulation and modeling.

Looking ahead, the REGROW project aims to apply this
data modeling process to optimize energy storage, prevent
rolling outages, and enhance renewable energy production
and storage, including advancements in lithium batteries. As
extreme weather events become more prevalent, the ability
to predict, prepare for, and mitigate their impact on energy
systems will be essential to maintaining reliable energy
production and distribution.

By understanding the metrics from the temperature, solar
irradiance, and wind speed data, this research lays the
foundation for validation in simulation tasks with risk
modeling and robust control for future optimization models.
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